Learning a Manifold of Fontsupplemental Material
نویسندگان
چکیده
Andale Mono Andalus Angsana New Aparajita Arial Browallia New Calibri Cambria Candara Consolas Constantia Corbel Cordia New DaunPenh David Ebrima Euphemia Franklin Gothic Book Gautami Georgia Gill Sans MT Kalinga Lao Sangam MN Lucida Sans Unicode MS PMincho Microsoft Himalaya Microsoft Sans Serif Microsoft Tai Le Miriam Mongolian Baiti MoolBoran Narkisim Nyala PMingLiU Palatino Linotype Perpetua Plantagenet Cherokee Shonar Bangla SimSun-ExtB Sylfaen Tahoma Times New Roman Traditional Arabic Trebuchet MS Vani Verdana
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کاملVideo Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کامل